Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Virol Methods ; 307: 114553, 2022 09.
Article in English | MEDLINE | ID: covidwho-1867443

ABSTRACT

In order to detect the SARS-CoV-2 variants of concern (VOCs), five real-time reverse transcriptase PCR (rRT-PCR) assays were designed to target the critical discriminatory mutations responsible for the following amino acid changes in the spike protein: two Δ69-70 + N501Y + E gene triplexes (one optimized for Alpha [B.1.1.7] and one optimized for Omicron [B.1.1.529]), a K417N + 242-244 wild-type duplex, a K417T + E484K duplex, and a L452R + P681 + E484Q triplex. Depending on the assay, sensitivity was 98.97-100% for the detection of known VOC-positive samples, specificity was 97.2-100%, limit of detection was 2-116 copies/reaction, intra- and interassay variability was less than 5%, and no cross-reactivity with common respiratory pathogens was observed with any assay. A subset of rRT-PCR- positive VOC samples were further characterized by genome sequencing. A comparison of the lineage designation by the VOC rRT-PCR assays and genome sequencing for the detection of the Alpha, Beta, Gamma, Delta and Omicron variants showed clinical sensitivities of 99.97-100 %, clinical specificities of 99.6-100 %, positive predictive values of 99.8-100%, and negative predictive values of 99.98-100 %. We have implemented these rRT-PCR assays targeting discriminatory single nucleotide polymorphisms for ongoing VOC screening of SARS-CoV-2 positive samples for surveillance purposes. This has proven extremely useful in providing close to real-time molecular surveillance to monitor the emergence of Alpha, the replacement of Alpha by Delta, and the replacement of Delta by Omicron. While the design, validation and implementation of the variant specific PCR targets is an ever-evolving approach, we find the turn-around-time, high throughput and sensitivity to be a useful complementary approach for SARS-CoV-2 genome sequencing for surveillance purposes in the province of Alberta, Canada.


Subject(s)
COVID-19 , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
J Appl Lab Med ; 7(4): 834-841, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1730685

ABSTRACT

BACKGROUND: Point-of-care SARS-CoV-2 antigen tests have great potential to help combat the COVID-19 pandemic. In the performance of a rapid, antigen-based SARS-CoV-2 test (RAT), our study had 3 main objectives: to determine the accuracy of nasal swabs, the accuracy of using nasopharyngeal swabs for nasal collection (nasalNP), and the effectiveness of using residual extraction buffer for real-time reverse-transcriptase PCR (RT-PCR) confirmation of positive RAT (rPan). METHODS: Symptomatic adults recently diagnosed with COVID-19 in the community were recruited into the study. Nasal samples were collected using either a nasalNP or nasal swab and tested immediately with the RAT in the individual's home by a health care provider. 500 µL of universal transport media was added to the residual extraction buffer after testing and sent to the laboratory for SARS-CoV-2 testing using RT-PCR. Parallel throat swabs tested with RT-PCR were used as the reference comparators. RESULTS: One hundred and fifty-five individuals were included in the study (99 nasal swabs, 56 nasalNP). Sensitivities of nasal samples tested on the RAT using either nasal or nasalNP were 89.0% [95% confidence interval (CI) 80.7%-94.6%] and 90.2% (95% CI 78.6%-96.7%), respectively. rPan positivity agreement compared to throat RT-PCR was 96.2%. CONCLUSIONS: RAT reliably detect SARS-CoV-2 from symptomatic adults in the community presenting within 7 days of symptom onset using nasal swabs or nasalNP. High agreement with rPan can avoid the need for collecting a second swab for RT-PCR confirmation or testing of variants of concern from positive RAT in this population.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
3.
Microbiol Spectr ; 9(1): e0031521, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1352540

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) have emerged as a global threat to the COVID-19 pandemic response. We implemented a combined approach to quickly detect known VOCs while continuously monitoring for evolving mutations of the virus. To rapidly detect VOCs, two real-time reverse transcriptase PCR assays were designed and implemented, targeting the spike gene H69/V70 deletion and the N501Y mutation. The H69/V70 deletion and N501Y mutation assays demonstrated accuracies of 98.3% (95% CI 93.8 to 99.8) and 100% (95% CI 96.8 to 100), limits of detection of 1,089 and 294 copies/ml, and percent coefficients of variation of 0.08 to 1.16% and 0 to 2.72% for the two gene targets, respectively. No cross-reactivity with common respiratory pathogens was observed with either assay. Implementation of these tests allowed the swift escalation in testing for VOCs from 2.2% to ∼100% of all SARS-CoV-2-positive samples over 12 January to 9 February 2021, and resulted in the detection of a rapid rise of B.1.1.7 cases within the province of Alberta, Canada. A prospective comparison of the VOC assays to genome sequencing for the detection of B.1.1.7, combined detection of P.1 and B.1.351, and wild-type (i.e., non-VOC) lineages showed sensitivities of 98.2 to 100%, specificities of 98.9 to 100%, positive predictive values of 76.9% to 100%, and negative predictive values of 96 to 100%. Variant screening results inform sampling strategies for regular surveillance by genome sequencing, thus allowing rapid identification of known VOCs while continuously monitoring the evolution of SARS-CoV-2 in the province. IMPORTANCE Different strains, or variants, of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) have emerged that have higher levels of transmission, less susceptibility to our immune response, and possibly cause more severe disease than previous strains of the virus. Rapid detection of these variants of concern is important to help contain them and prevent them from spreading widely within the population. This study describes two newly developed tests that are able to identify and differentiate the variants of concern from regular strains of SARS-CoV-2. These tests are faster and simpler than the main, gold standard method of identifying variants of concern (genome sequencing). These tests also demonstrated a high correlation with genome sequencing and allowed for the rapid and accurate detection of the rise of B.1.1.7 (one of the variants of concern) in the province of Alberta, Canada.


Subject(s)
COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Base Sequence , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Canada , Humans , Mutation , Pandemics , Polymerase Chain Reaction , Prospective Studies
4.
J Med Microbiol ; 70(7)2021 Jul.
Article in English | MEDLINE | ID: covidwho-1324847

ABSTRACT

Introduction. The ID NOW is FDA approved for the detection of SARS-CoV-2 in symptomatic individuals within the first 7 days of symptom onset for COVID-19 if tested within 1 h of specimen collection.Gap statement. Clinical data on the performance of the ID NOW are limited, with many studies varying in their study design and/or having small sample size.Aim. In this study we aimed to determine the clinical performance of the ID NOW compared to conventional RT-PCR testing.Methodology. Adults with COVID-19 in the community or hospital were recruited into the study. Paired throat swabs were collected, with one throat swab transported immediately in an empty sterile tube to the laboratory for ID NOW testing, and the other transported in universal transport media and tested by an in-house SARS-CoV-2 RT-PCR assay targeting the E gene.Results. In total, 133 individuals were included in the study; 129 samples were positive on either the ID NOW and/or RT-PCR. Assuming any positive result on either assay represents a true positive, positive per cent agreement (PPA) of the ID NOW compared to RT-PCR with 95 % confidence intervals was 89.1 % (82.0-94.1%) and 91.6 % (85.1-95.9%), respectively. When analysing individuals with symptom duration ≤7 days and who had the ID NOW performed within 1 h (n=62), ID NOW PPA increased to 98.2 %.Conclusion. Results from the ID NOW were reliable, especially when adhering to the manufacturer's recommendations for testing.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Adult , False Negative Reactions , False Positive Reactions , Female , Humans , Male , Nucleic Acid Amplification Techniques , Reproducibility of Results , Time Factors
5.
Eur J Clin Microbiol Infect Dis ; 40(8): 1721-1726, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1141451

ABSTRACT

SARS-CoV-2 antigen tests used at the point-of-care, such as the Abbott Panbio, have great potential to help combat the COVID-19 pandemic. The Panbio is Health Canada approved for the detection of SARS-CoV-2 in symptomatic individuals within the first 7 days of COVID-19 symptom onset(s). Symptomatic adults recently diagnosed with COVID-19 in the community were recruited into the study. Paired nasopharyngeal (NP), throat, and saliva swabs were collected, with one paired swab tested immediately with the Panbio, and the other transported in universal transport media and tested using real-time reverse-transcriptase polymerase chain reaction (RT-PCR). We also prospectively evaluated results from assessment centers within the community. For those individuals, an NP swab was collected for Panbio testing and paired with RT-PCR results from parallel NP or throat swabs. One hundred and forty-five individuals were included in the study. Collection of throat and saliva was stopped early due to poorer performance (throat sensitivity 57.7%, n=61, and saliva sensitivity 2.6%, n=41). NP swab sensitivity was 87.7% [n=145, 95% confidence interval (CI) 81.0-92.7%]. There were 1641 symptomatic individuals tested by Panbio in assessment centers with 268/1641 (16.3%) positive for SARS-CoV-2. There were 37 false negatives and 2 false positives, corresponding to a sensitivity and specificity of 86.1% [95% CI 81.3-90.0%] and 99.9% [95% CI 99.5-100.0%], respectively. The Panbio test reliably detects most cases of SARS-CoV-2 from adults in the community setting presenting within 7 days of symptom onset using nasopharyngeal swabs. Throat and saliva swabs are not reliable specimens for the Panbio.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Nasopharynx/virology , Pharynx/virology , Saliva/virology , Adult , Aged , Aged, 80 and over , Canada , False Negative Reactions , False Positive Reactions , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL